Nilai lim_(x→0)⁡ x^2/(1-√(1+x^2))=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x \to 0} \ \frac{x^2}{1-\sqrt{1+x^2}} = \cdots \)

  1. 2
  2. 0
  3. -1
  4. -2
  5. -3

(EBTANAS SMA IPA 2000)

Pembahasan:

\begin{aligned} \lim_{x \to 0} \ \frac{x^2}{1-\sqrt{1+x^2}} &= \lim_{x \to 0} \ \frac{x^2}{1-\sqrt{1+x^2}} \times \frac{1+\sqrt{1+x^2}}{1+\sqrt{1+x^2}} \\[8pt] &= \lim_{x \to 0} \ \frac{x^2(1+\sqrt{1+x^2})}{1-(1+x^2)} \\[8pt] &= \lim_{x \to 0} \ \frac{x^2(1+\sqrt{1+x^2})}{-x^2} \\[8pt] &= \lim_{x \to 0} \ -(1+\sqrt{1+x^2}) \\[8pt] &= -(1+\sqrt{1+0^2}) = -2 \end{aligned}

Jawaban D.